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Abstract—This paper proposes ElastiCast, a novel Bluetooth
Low Energy (BLE) broadcast mode that reduces the neighbor
discovery latency in offline finding networks (OFNs). ElastiCast
adapts the broadcast mode of the lost devices to the scan modes
of the finder devices, considering their diversity. We start with
an overview of OFNs, followed by a detailed analysis of the
issues and challenges of existing solutions, which motivates
the design of ElastiCast. Then we provide Blender, a simula-
tor that models the neighbor discovery behavior of different
broadcasters and scanners. By adopting Blender, ElastiCast
can be implemented with three components: Local Optima
Estimation, Common Interest Extraction, and Interval Multi-
plexing, in which we capture the key features of BLE neighbor
discovery and globally optimize the broadcast mode interacting
with diverse scan modes. Experimental evaluation results and
commercial product deployment experience demonstrate that
ElastiCast is effective in achieving stable and bounded neighbor
discovery latency within the power budget.

Index Terms—Offline Finding Network, Neighbor Discovery,
Bluetooth Low Energy, Scan Mode Diversity

I. INTRODUCTION

Mobile devices, which are essential in our daily lives,
might go missing at a time. Thus some wearable devices
(e.g., My Buddy Tag, Moochies, Pocket Finder) are equipped
with the feature of position tracking. These devices, however,
require Internet access and are often costly and power-hungry,
due to the complicated built-in communication components.
To tackle this issue, some industrial pioneers (e.g., Tile,
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Nutspace and Nut Technology, Apple, and Samsung) have de-
veloped offline finding networks (OFN) that leverage nearby
online devices (a.k.a., finder devices) to help users locate their
lost devices even when the devices are offline. For instance,
Apple has over 1 billion iPhones that already have the Find
My application [1] installed. These iPhones have formed one
of the largest crowd-sourced OFNs worldwide [2]. Apple’s
AirTag [3] is a tiny metal tracker that works with the Find
My application, and can be attached to a keychain, dropped
in a bag, or snapped onto luggage to keep track of these
items. AirTag, together with its OFN service, is predicted as
Apple’s next billion-dollar business [4].

Nowadays, OFN remains in its infancy with plenty of
unsettled issues. To the best of our knowledge, almost
all prior works focus on privacy and security analysis of
OFN systems [5]–[9]. Their goal falls into the category of
enabling crowd search without leaking private data. This
paper does not focus on the security and privacy issues of
OFNs. Instead, we take a first step toward understanding the
OFN framework (see §III) and identify its design challenges
from the perspective of performance. Particularly, in OFN
applications, the user experience is closely related to the
success ratio (probability) of finding the lost device, which
is significantly affected by the neighbor discovery latency
(see §IV-A). Neighbor discovery is the prerequisite stage
of OFN, in which a finder device tries to establish contact
with the lost device in the BLE signal range. It involves
interactions between broadcasters and scanners in a duty-
cycling paradigm with three parameters: the broadcaster’s
broadcast interval (A), the scanner’s scan window (W ), and
the scan interval (T ).

Existing works typically focus on optimizing point-to-
point BLE broadcasts and scans [10]–[18]. These prior
works, however, fall into the category of setting broadcast
mode in the case of homogeneous neighbor discovery, where
all the scanners are with the same scan mode. Among
them, Kindt et al. [18] have proposed the tight duty-cycle-
dependent bounds on the worst-case discovery latency that
no prior neighbor discovery parameter setting approaches
can beat, and concluded there is no further potential to
improve the relationship between latency and duty-cycle in
homogeneous neighbor discovery. In this paper, we argue
that it is still possible to optimize discovery latency with a
power budget in OFN due to the scan mode diversity of finder
devices.

The finder devices are composed of a group of users
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Fig. 1: Key modules in ElastiCast.

that are close to and within the Bluetooth signal coverage
of the lost device. From the perspective of the operators
in the ecosystem of OFN, the broadcast mode of the lost
device is usually controllable (i.e., private brand), while the
scan modes of finder devices are uncontrollable. The users
of finder devices are crowd-sourced and are probably in
different power modes (e.g., power-saving mode and high-
performance mode) or from different manufacturers (e.g.,
Samsung, Huawei, Oppo, Vivo, and Xiaomi from the Android
ecosystem). Thus, the scan modes of the finder devices are
diverse. The challenge is to find the optimal broadcast mode
(pattern) that adapts to the diversity of the uncontrollable
scan modes (see §IV-D).

The broadcast mode affects both discovery latency and
power consumption. On the one hand, a large broadcast in-
terval may result in a large discovery latency, significantly re-
ducing the possibility of finding lost devices (see §IV-A). On
the other hand, the power consumption by the broadcaster is
inversely proportional to the broadcast interval. For example,
with the default broadcast interval 2000 ms [19], the AirTag’s
CR2032 lithium coin battery life lasts for one year [3]. Still,
it may be halved if the broadcast interval is reduced to 500
ms (see Table I). Hence, a smaller broadcast interval means
higher power consumption, reducing the applicability of OFN
systems.

It seems intuitive that choosing the minimal A within the
power budget would maximize discovery. However, multi-
ple broadcast intervals yield local minimum latency for a
given W and T on the scanner (see Figure 6). Therefore,
choosing the minimal A may not always maximize discovery.
On the other hand, the conventional method of neighbor
discovery that adopts a fixed broadcast mode is far from
satisfactory, as it may result in suboptimal performance of
neighbor discovery in the case of scan mode diversity. In
other words, its discovery latency is not bounded within the
power budget (see §IV-E). This paper presents a brand-new
broadcast mode called ElastiCast. As shown in Figure 1,
ElastiCast deals with the scan mode diversity issues through
the following modules: Local Optima Estimation, Common
Interest Extraction, and Interval Multiplexing.

Local Optima Estimation uses Blender (originally pro-
posed in [20]), a neighbor discovery simulator that mimics
the behavior of broadcasters and scanners. Differing from
the conventional method of random sampling, Blender uses
specifically designed models to generate a deterministic full
distribution of latency (see §IV-B and §VI-A). The input of
estimation contains multiple settings of scan modes among
all possible finder devices, and the output is the set of latency
distributions as the functions of the broadcast interval.

Common Interest Extraction exploits the non-linear rela-
tionship between discovery latency and power consumption

(see §IV-C). It selects the common broadcast intervals that
achieve minimized discovery latency among all scan modes.
However, simply choosing a single optimal broadcast interval
might introduce bias due to the random advertising delay (i.e.,
adv delay), a pseudo-random value with a range of 0 ms to
10 ms generated for each broadcast event (see §VI-B).

Interval Multiplexing overcomes the hurdles caused by
adv delay. It uses a mixture of multiple feasible broadcast
intervals instead of a single one. It advances toward the global
optima in the cases where adv delay is non-negligible (see
§VI-C).

Experimental evaluation results show that ElastiCast is
effective in realizing stable and low-latency BLE neighbor
discovery within the power budget in the case of scan mode
diversity. Specifically, compared to the conventional method
of local optima, ElastiCast reduces the discovery latency by
50% to 90% within the power budget in our case studies. Our
commercial product applying ElastiCast is also improves the
success rate by over 11% compared to the state-of-the-art
AirTag in a real-world deployment. This can be attributed
to the elasticity of ElastiCast, which adapts well to the scan
mode diversity by searching for the best broadcast pattern that
achieves the globally minimized discovery latency within the
power budget (see §VIII).

The rest of this paper is organized as follows. §II reviews
the related work. §III introduces the background and frame-
work of OFN. §IV explains the design rationale of ElastiCast.
§V summarizes the design of ElastiCast together with the
Blender simulator, followed by the detailed procedure of
ElastiCast in §VI. We evaluate the performance of Blender
in §VII and the performance of ElastiCast in §VIII, and
conclude the paper in §IX.

II. RELATED WORK

Offline Finding Networks. Prior studies on OFNs mainly
focus on how to enable crowd search without leaking private
data [5]–[8]. For example, Apple proposed the asymmet-
ric key-based way that encrypts location data with public
keys [3], [8]. Mira Weller et al. [5] proposed a symmetric
key-based way, called PrivateFind, to provide end-to-end
encryption of location data. Other works have conducted
an in-depth analysis of security and privacy issues based
on these two ways. For example, Heinrich et al. [6] chal-
lenge OFN’s security and privacy claims and examine the
system design and implementation for vulnerabilities through
reverse engineering. Mayberry et al. [7] show that OFN’s
threat model for antitracking is dangerously incomplete and
presents three strategies that a malicious tracker can use to
evade detection by item safety alerts. Tonetto et al. [8] further
present how OFNs can be used to estimate large groups of
people, which is beyond its original purpose of tracking lost
devices. In this paper, we do not focus on the privacy and
security aspects of OFN systems. Instead, we take a first step
towards understanding the OFN framework and highlight its
design challenges from the perspective of neighbor discovery
performance.
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Neighbor Discovery. Efficient neighbor discovery aims to
achieve the shortest possible discovery latency for a given
power budget. To this end, a large number of broadcast and
scan setting approaches [21]–[31] have been proposed for
general wireless neighbor discovery. For instance, following
slotted neighbor discovery protocols where time is divided
into fixed intervals that communication occurs within, Hello
[27] identifies overlaps in active slots and offers a framework
for abstracting parameter settings in active slot selections.
Hedis [30] provides a better solution in asymmetric situations
where the devices are operating in different duty-cycles.
Diff-Codes [28] decreases worst-case and median latency
through maximizing the likelihood of two devices being
awake at the same time. However, despite the necessity of
synchronization between devices in slotted protocols, latency
distribution is hardly observed in the optimization problem
statements. Besides traditional slotted protocols, there are
studies specifically designed for BLE neighbor discovery
[10]–[18], [32], [33]. Examples include [10], [13], where
realistic measurements are adopted as the basis for searching
the best parameter configurations. Meanwhile, [11] proposes
the Effective-Scan-Window-based modeling for slotless BLE
neighbor discovery, which, together with the subsequent
works [12], [17], simulates and evaluates the discovery
process. Kindt et al. [18] have proposed the tight duty-
cycle-dependent bounds on the worst-case discovery latency
and concluded there is no further potential to improve the
relationship between latency and duty-cycle in homogeneous
neighbor discovery. These prior works, however, fall into the
category of setting broadcast mode in the case of homoge-
neous neighbor discovery, where all the scanners are with
the same scan mode. To the best of our knowledge, this is
the first work that captures the key features of OFN neighbor
discovery where finder devices vary in different scan modes
and overcome the challenges induced by scan mode diversity.

Discovery Latency Estimation. The correlation between
parameter combinations of neighbor discovery, specifically
BLE-like instances, and discovery latency is naturally com-
plicated due to the flexibility of parameter selection, which
arouses the requirement for calculating the discovery latency.
The approaches adopt different methodologies including a
pragmatic idea to conduct realistic measurements [10], [13].
To overcome the randomness and wall-clock time consump-
tion in real-world experiments, more modeling-based meth-
ods are proposed, considering the limitation of theoretical
analysis triggered by the complex interaction between the
scanner and the broadcaster. The majority of recent modeling
methods [34]–[36] utilize the Chinese Remainder Theorem
(CRT) to calculate latency for every range-entrance situation.
Besides, to either avoid redundant and inefficient calculations
or reveal the impact of the parameter configuration on
the discovery process, more analytical models have been
proposed. For example, [37] builds the Partition model to
group the offsets of the first scan window to the range-
entrance event, and derives an average latency in terms of
the number of broadcasting events before discovery. Unfortu-
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Fig. 2: Ecosystem overview of OFN.

nately, the model is complicating the discovery analysis and
is tailored for average and worst-case latency. Even if the
model is reformed to produce the distribution of discovery
latency, the fixed duty-cycle of the broadcaster that deeply
entangles within the model and the derivation steps prevents
the model to generalize to dynamic duty-cycle, including the
broadcasting with random delay and the flexible broadcasting
intervals. The Coverage Model from [18], though proposed
earlier than many neighbor discovery models, manifests its
conciseness in revealing the nature of the discovery process.
It is utilized to formulate the minimum worst-cast latency
at a given fixed duty-cycle or with flexible intervals but
an expected duty-cycle. Nevertheless, the Coverage Model
was delivered with excessive focus on the configurations that
achieve the minimum possible worst-case latency, neglecting
the other configurations as well as their performance assess-
ment outside of the worst-case scenario. In other words, the
potential of Coverage Model has not be fully leveraged by
neither the original nor the subsequent studies.

III. OFFLINE FINDING NETWORK: AN OVERVIEW

The ecosystem of OFN consists of four types of roles.
As shown in Figure 2, the Lost Device is usually a thin
device (e.g., watch, headset, tag) without complicated built-
in functions of communication and positioning. It can also
be a rich device (e.g., phone, tablet) without online access.
The Finder Devices are a group of users who are close to
and within the Bluetooth signal coverage of the lost device.
These devices are usually rich devices with built-in functions
of communication and positioning, acting as volunteers to
help the offline lost device report its location. The Cloud
Server provides the storage service of the reported locations
in the cloud. Since the location data is encrypted, the privacy
of finder devices is protected. The Owner Client is usually a
device with Internet access (e.g., phone, tablet) that decrypts
the location data queried from the cloud server.

To understand how OFNs work in detail, we take Apple’s
Find My feature that works with Apple’s iPhone and AirTag
as a case study. The basic framework of Apple’s Find My
is illustrated in Figure 3. We can see that there are two
additional components called iCloud Server and Finder’s
iPhones that help the Owner’s iPhone find the lost AirTag.

For initialization, the owner binds AirTag to his/her
iPhone, and the Find My application generates the Elliptic
Curve key pair, whose public key is stored in the AirTag
(Step 1 in Figure 3). When the AirTag is detected and
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marked as lost (in Step 2), it generates rolling public keys
periodically (e.g., 10 minutes) using a shared secret [38] (in
Step 3). The AirTag broadcasts the public keys periodically
(i.e, broadcast interval A = 2000 ms), and multiple nearby
iPhones recognize and get the broadcasted public key via
BLE neighbor discovery (in Step 4). These finder’s iPhones
retrieve their current location, encrypt the location with the
public key (in Step 5) and upload the encrypted location
record (in Step 6). To find the lost AirTag, the paired owner’s
iPhone generates the list of the rolling public keys that the
AirTag would have used in the last days and queries the
iCloud server (in Step 7). The server returns the encrypted
location records (in Step 8) for the list of requested public
keys, and finally, the owner’s iPhone decrypts the location
records with its private key and obtains an approximate
location of the lost AirTag (in Step 9).

We have also investigated other OFNs. Although some of
them (e.g., PrivateFind) adopt a different key management
scheme, the basic workflow remains similar. Thus we have
found that Apple’s framework is representative in terms of the
four major components of an OFN as illustrated in Figure 3,
which is not surprising given it is a natural extension to the
conventional finding networks with crowd-sourcing.

IV. NEIGHBOR DISCOVERY LATENCY OF OFN: ISSUES
AND CHALLENGES

This section discusses several observations on the issues
and challenges in the neighbor discovery of OFN.

Bluetooth
Signal Range

2R

Walking Speed
(e.g., V=1.4 m/s)

Lost Device

Finder Device

(e.g., R= 10 m)

Fig. 5: Neighbor discovery between finder device and lost
device in the walking scenario.

A. Neighbor Discovery Latency Matters in OFN
As the prerequisite stage of OFN, neighbor discovery is

an essential process where a finder device seeks to first
contact the lost device in the BLE radio range (i.e., Step
4 in Figure 3). Generally, neighbor discovery involves the
interactions between a broadcaster and a scanner, where the
broadcaster broadcasts signals periodically and the scanner
operates in a duty-cycling paradigm (see Figure 4). Neighbor
discovery succeeds at the time when a scanner captures the
complete packet in a broadcast event, which should occur
immediately when the scanner device enters the radio range
of the broadcaster device if the devices are scanning/broad-
casting continuously. The discovery latency is measured from
the time when both devices enter the range of reception.
We refer to this outset as t = t0 = 0 as in Figure 4,
denoted by the entrance time or range-entrance event. From
the range-entrance event, a broadcasting event for a packet to
be broadcasted should occur after a period of δbc; a scanning
window should occur after a period of δscan. Thereby, the
discovery latency is defined as:

L = δbc +N ·A (1)

where the (N − 1)-th broadcast packet is the first one, after
the entrance time, overlapping within an active scan window.
Specifically, a broadcast at time t = δbc+N ·A will overlap
with an active scan window if the following condition is
satisfied:

(δbc − δscan +N ·A) mod T < W

The modulo operation accounts for the periodic nature of the
scanning schedule, effectively mapping the time difference
into a single scanning interval. Therefore, N can formally
defined as the minimal non-negative integer achieving the
overlap:

N = min
{
n ∈ Z≥0

∣∣∣ (δbc − δscan + n ·A) mod T < W
}

As illustrated in Figure 4, the discovery latency is related to
the broadcaster’s broadcast interval (A), the scanner’s scan
window (W ), and scan interval (T ), where the scan duty
cycle is computed by D = W

T . In general, power consump-
tion is proportional to D and is inversely proportional to A,
while a larger A or a lower D leads to an interleaved activity
pattern between the broadcaster and the scanner, which may
induce unacceptably large discovery latency [18], [39]. Since
both the lost devices and the finder devices in OFN are
power-sensitive [3], [40], the large discovery latency may
significantly reduce the possibility of finding lost devices.

To explain this more clearly, we give an example of how
a lost device is found by a finder device. As shown in
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(i.e., a representative scan mode labeled as BALANCED
in modern Android systems [42]).

Figure 5, a person with a finder device passes the Bluetooth
signal range (e.g., a cycle area with a radius of R = 10
meters [41]) of a lost device at a walking speed (e.g., V = 1.4
meters per second)1. Assuming the ideal case where a person
walks along the diameter of the circle, the neighbor discovery
latency should not exceed the time the person spends within
the Bluetooth signal range (i.e., latency tolerance, 2R

V ≈ 14
seconds). Otherwise, the finder device fails to find the lost
device, and the opportunity is wasted. Thus we conclude that
neighbor discovery latency matters in OFN concerning the
possibility of finding lost devices.

B. A Full Latency Distribution Requires Consideration

In previous parameter evaluation tools for BLE-like neigh-
bor discovery, the rubric focuses on the mean or the worst-
case latency (i.e., the longest discovery latency under a
parameter setting) [18]. However, a metric equipped with
probabilistic features can be required. In some services such
as proximity tracing [43], [44] and assets tracking [5], [45],
the accomplishment of discovery becomes an expectation
rather than a necessity due to the restriction of the length
of time reserved for discovery.

Specifically, there is an expected rate P% of successful
discovery within a given time L, where good parameters
here are supposed to reach this expectation. This quantified
requirement is suitable to be represented through a CDF. In
a latency CDF, each probability value P corresponds to a
latency value LP , which is the P -percentile latency. Here,
reaching a success rate of no lower than P% in L time
has an equivalent expression: the P -percentile latency being
smaller than L. In order to provide any P -percentile latency,
a full distribution of latency values is hence necessary. The
importance and configuration of P is revisited in §V-B and
§VI-B

While a series of previous works are mentioned to pos-
sess the functionality to generate full latency distribution,
such distributions stem from an incomplete domain. As we
claimed in §IV-A, the first scan window after the range-
entrance event should also have a time offset δs from the
range-entrance event rather than stick at time zero. While the

1A person’s state of motion contains static scenario (e.g., still), low-
speed scenario (e.g., walking), and high-speed scenario (e.g., running or
riding vehicles). Since the static scenario can hardly suffer from performance
issues, and the high-speed scenario is regarded as a rare case in OFN, in
this paper we mainly focus on the most representative case of walking.

previous distributions were generated upon a domain with a
fixed first scan window, the refined range-entrance event will
significantly enlarge the domain and can produce a more
practical distribution. The refinement, however, cannot be
directly applied to the existing methods. Since the simulation
time for both CRT-based and effective-scan-window-based
methods can be significantly prolonged due to their need to
traverse the entire domain, this becomes impractical when
a large number of parameter configurations need to be
evaluated.

C. Discovery Latency is a Non-linear Function of Power
Consumption

It has been well-studied that the trade-off between dis-
covery latency and power consumption should be carefully
handled to meet the application’s required performance un-
der the power constraint. Intuitively, discovery latency is
inversely proportional to power consumption. However, this
is only true when A ≤ W , which is well studied in the prior
studies [11], [46]. Recently, Kindt et al. [16] have exposed the
non-linear relationship between discovery latency and power
consumption when A > W . As shown in Figure 6, given a
certain scan mode, i.e., scan window (W ) and scan interval
(T ), there exists an upper bound of discovery latency in the
worst case for each broadcast interval (A). As plotted in the
blue line, the worst-case latency is a non-linear function of
A.

Since both broadcaster and scanner may randomly come
into the range of reception, i.e., the range-entrance times δbc
and δscan (see Figure 4) are the stochastic factors that decide
the actual measured discovery latency. As a result, for a given
A, the measured discovery latencies (plotted as blue stars)
range from zero to the upper bound (i.e., worst-case latency).

In Figure 6, we further find that there exist multiple local
minimum worst-case latencies (plotted as blue cycles). It
is demonstrated in the prior work [18] that all the local
minimum worst-case latencies follow a line with a slope
of ⌈ T

W ⌉. This reveals that the distribution of the worst-case
latency varies with the scan mode. For the sake of description,
we define that A is within “valley area” when A achieves the
local minimum worst-case latency, and A is within the “semi-
valley area”, the “semi-peak area”, and the “peak area”,
respectively, according to the increased latency compared to
the corresponding local minimum worst-case latency.

To summarize, the existence of multiple valley areas
implies that we might fail to reduce discovery latency by
simply reducing A. Instead, we need to “smartly” select A
within valley areas while not violating the power constraint.

D. Finder Devices Vary in Scan Modes

As shown in Figure 2, the finder devices are composed of
a group of crowd-sourced users that are nearby and under
the Bluetooth signal coverage of the lost device. Hence the
scan modes of finder devices are usually uncontrollable. As
a result, these finder devices usually show diversity in scan
modes. We further summarize the causes, i.e., dynamics and
customization, of this diversity below.
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Dynamics. By default, the Android Open Source
Project (AOSP) supports three scan modes labeled as
LOW LATENCY, BALANCED, and LOW POWER [42].
For a certain finder device, the scan mode might depend
on whether the device is in power-saving mode or high-
performance mode, whether the device screen is on or off,
and whether the application is running in the foreground or
background. For example, Android recommends applying
LOW LATECNY scan mode with a duty cycle of 100%
only when the application is in the foreground, and
LOW POWER scan mode with a duty cycle of 10% when
the application is in the background.

Customization. Some manufacturers might customize the
scan mode in their products to achieve a better trade-off be-
tween scan frequency and power consumption. For example,
iOS proposes a customized scan mode that scans 30 ms for
every 300 ms in its OFN (i.e., Apple’s Find My [3]), while
HarmonyOS recommends a scan mode that scans 20 ms for
every 600 ms in its HiLink protocols [47].

It is worth noting that forming a global finder network
with different brands could help alleviate performance chal-
lenges brought about by scan mode diversity. However, both
technical and non-technical issues arise. On the technical
side, this approach cannot fully eliminate the diversity in
scan modes. This is because even for phones of the same
brand, the scanning mode may differ depending on whether
the screen is on or off. On the non-technical side, each phone
manufacturer aims to optimize the performance of its devices
in specific scenarios, leading to the customization of their
scan modes.

E. Scan Mode Diversity Results in Local Optima

As discussed above, for each scan mode we should care-
fully search an optimal broadcast interval to obtain the
minimum upper bound of discovery latency. However, the
distribution of the worst-case latency varies with the scan
mode. As a result, an optimal broadcast interval for a certain
scan mode might not be the optimal broadcast interval for
another scan mode.

To explain this more clearly, in Figure 7 we give an
example of neighbor discovery in the case of multiple
scan modes. Specifically, three types of finder devices act
as scanners, and the lost device acts as the broadcaster.
Their scan modes are 30ms/300ms, 60ms/600ms, and

60ms/3000ms, respectively. As shown in Figure 7 (a), when
we set the broadcast interval A = 2000 ms according to
the default settings in modern commercial products (e.g.,
AirTag), we find that A = 2000 ms is within the valley area
of the scan mode 1, but A = 2000 ms is within the peak and
semi-peak area of the scan modes 2 and 3, respectively. This
reveals that the scan mode diversity results in local optima.

Based on these observations, the legacy way of neighbor
discovery is far from satisfactory. In this paper, we aim to
search for the global optimal broadcast pattern that makes the
broadcast interval(s) within the valley or semi-valley area for
all types of scan modes (see Figure 7 (b)). Thus we proposed
ElastiCast as we will elaborate next.

V. ELASTICAST OVERVIEW

The primary goal of ElastiCast is to achieve global op-
tima by overcoming the challenges induced by scan mode
diversity. In this section, we first formalize the problem of
neighbor discovery with scan mode diversity, and then we
introduce the framework of ElastiCast.

A. Problem Formalization

We model the overall performance of discovery latency by
introducing the metric, weighted average discovery latency,
denoted as l̂. Given a set S = {s1, s2, ..., sn} including n
types of scan modes, where si is the ith scan mode. Let ωi

and li be the market share and the discovery latency of the
ith scan mode, respectively. Here the market share represents
the percentage of different types/states of finder devices in
the market, which approximates the percentage of states of
finder devices near a lost device. Then the weighted average
discovery latency l̂ is computed as follows

l̂ =

n∑
i=1

ωi · li (2)

As mentioned in the previous section, the duty cycle of a
lost device cannot be vast due to power constraints. ElastiCast
aims to minimize the weighted average discovery latency
within the power budget. In order words, we aim to achieve

Z = min l̂, s.t. A ≥ Amin (3)

where A is the selected broadcast interval, and Amin is
the minimum broadcast interval. As illustrated in Table I,
the broadcaster’s power consumption (battery life) increases
proportionally with the broadcast interval. Hence, Amin can
be equivalently regarded as the power budget of a broadcaster
in this paper.

TABLE I: Battery life with different broadcast intervals.

Battery Capacity A Battery Life
ER14250 2400 mAh 500 ms 60 months
CR2032 240 mAh 1000 ms 9 months
CR2032 240 mAh 2000 ms 12 months

It is worth noting that market share changes can affect the
optimality of the undecided broadcast interval parameters in
ElastiCast. This paper assumes that market share changes,
calculated at a regional level, are relatively slow within most
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users’ activity areas. However, as future work, we plan to
offer a dedicated app, which will run on smartphones and
connect to the TAG to configure its broadcast mode based
on the dynamic market share of scanning modes.

B. The ElastiCast Framework

The framework of ElastiCast is displayed as a data flow
diagram in Figure 8, which contains the input/output and
has three intermediate modules primarily. In this section,
we briefly introduce the design rationale of each module as
below.
Input and Output. When applying ElastiCast in the neigh-
bor discovery of OFN, the input contains multiple settings of
scan modes among all possible finder devices. The output is
the broadcast pattern of the lost device by multiplexing the
feasible broadcast intervals.
Local Optima Estimation. For each scan mode, given a
range of the broadcast intervals, the goal of this module
is to generate the P -percentile (P ∈ [0, 100]) discovery
latency from the latency distribution2. A straightforward way
is to repeatedly conduct real-world experiments [10], [13]
which have low efficiency and a high cost, much less the
bias induced by wireless interference [48]. Another way is
building a mathematical model that provides a function to
obtain a deterministic discovery latency from a certain set of
parameters. However, the state-of-the-art modeling work [18]
only provides the bound of discovery latency, while the
modeling of the distribution of all discovery latency values is
still an open issue in this field. Controllable and reproducible,
as shown in Figure 9, we build a lightweight neighbor
discovery simulation tool, Blender [20], that simulates the
behavior of the broadcaster and scanner according to the
parameter configurations. Blender distinguishes itself from
the legacy way of random sampling by applying equivalence-
relation-based Case Projection according to the Base-Case
Simulation, this not only avoids the costly brute-force traver-
sal through all cases but also achieves more deterministic
results than that of the random sampling.
Common Interest Extraction. For each scan mode, the
broadcast intervals near the valley or semi-valley area are
defined as the interest of this scan mode. As shown in
Figure 8, the latency distributions vary with different types
of scan modes. This module extracts the common interest

2By default, P = 100 refers to the worst-case discovery latency. However,
in practical cases manufacturers may care more about a range of tail latencies
(e.g., 95-percentile), thus we leave P as the customizable parameter.
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Fig. 9: The work progress of local optima estimation.
by finding the common broadcast intervals (e.g., b1, b2, and
b3 in Figure 8) that achieve the locally minimized weight
average discovery latency (i.e, Equation (2)) among all types
of scan modes. This serves as a basis for global optimization
of neighbor discovery performance in the case of scan mode
diversity.
Interval Multiplexing. A naive way of ElastiCast is to apply
a constant broadcast mode where a single broadcast interval
is carefully chosen through the common interest extraction.
However, as specified in the BLE standards [49], the interval
between two consecutive broadcast events is not a constant
but is mandatorily longer than the settled broadcast interval
by a random period within 10 ms, called the random advertis-
ing delay (denoted by adv delay, and adv delay ∈ [0, 10]
ms). As a result, a large adv delay might induce a negative
effect for the naive way of choosing a single broadcast
interval. Specifically, a broadcast interval within the valley
area might be shifted to a non-valley area due to the manda-
tory and random adv delay (see §VI-B for more details).
To tackle this issue, the interval multiplexing module steps
further toward the global optima by dealing with adv delay.
The design rationale is that different broadcast intervals show
different sensitivity to the adv delay (see Figure 15), and
multiplexing the complementary broadcast intervals might
compensate for the negative effect induced by the adv delay.
Specifically, we apply the broadcast pattern selected from
the Single Broadcast Pattern and the Alternation Broadcast
Pattern. The decision-making of the broadcast pattern and the
corresponding parameter settings are made according to the
minimized weighted average discovery latency for a given
power budget.

VI. DESIGN DETAILS

In this section, we proceed to the design details of the spe-
cific modules in ElastiCast. Notations are listed in Table II.

A. Estimate the Local Optima

The parameter selection scheme of ElastiCast relies on
the awareness of P -percentile latency under the candidate
broadcasting and scanning configurations, as discussed in
§V-B. In this section, we first present a method along with its
underlying principles illustrated, to produce the P -percentile
latency under given broadcasting and scanning configuration.
We then introduce the architecture of the Blender simulator
built upon the aforementioned P -percentile latency genera-
tion scheme.
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TABLE II: Notations

Name Description

A Broadcast interval

T Scan interval

W Duration of a scan window

δbc Offset between broadcast and scan sequences

Ai The i-th broadcasting event in a given broad-
casting sequence

G A time segment to be covered

ν Overlap length between newly covered and
previously covered periods in G

Υi Intermediate discovery latency produced by
broadcasting event Ai

Υf Latency from the first broadcasting event to
full coverage of segment G

Pl(Υi) Collaborative probability of achieving inter-
mediate latency Υi with δbc = 0

LΥ List of latency-probability pairs (Υi, Pl(Υi))

ε Deadline latency beyond which it is consid-
ered insignificant and all represented by ε

Q Root sequence of broadcasting intervals to be
repeated with dynamic broadcast interval

AQ
j j-th broadcasting event in Q selected as the

first broadcasting event after range entrance

τj Interval between events AQ
j and AQ

j−1 in Q

1) Beyond Worst-Case Latency: The Latency Probability
Distribution: To know the P -percentile latency for any P , it
is necessary to retrieve the latency’s probability distribution,
over the stochastic phase difference between the sequences
of broadcasting events/scanning windows. While neighbor
discovery involves the interaction between two devices, an
intuitive idea for producing the distribution is to reproduce
the discovery process from a global perspective; inefficiently
sampling from all possible phase difference values neverthe-
less can produce the latencies from start to timestamps that
both devices are simultaneously awake. But furthermore with
sampling, neither we achieved a deterministic distribution nor
we understood the principles of how the broadcasting/scan-
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Fig. 11: Coverage of possible scan window positions by
the single broadcasting event.
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Fig. 12: Coverage of possible scan window positions by
multiple broadcasting events.

ning parameters are alternating the distribution.
Exclusions in the discovery process. Rather than the random
sampling method, we can bring benefit in determinism of the
distribution and the estimation efficiency through shifting the
perspective to the broadcaster . The gist of a broadcaster’s
point of view is to conjecture about the relative time position
of the scan sequence to the broadcast sequence. In other
words, we build a probabilistic distribution over the time
offsets of all possible scan sequences to the given broadcast-
ing sequence. Figure 10 illustrate the basic principle with
assuming a broadcasting event occurring at time ta. If it
were captured by the scanner, a scan window must exist
and envelop this broadcasting event. Conversely, it can be
inferred from an uncaptured broadcasting event that there is a
period of time where the scan window is certainly deactivated
if no environmental interference occurs; if a broadcasting
event occurs at ta is not captured, the probability of any scan
window to commence in the period (ta −W, ta] is excluded.
Noticeably, this exclusion of (ta − W, ta] is not the end:
the periodically repeating nature of the scan window also
excludes (ta−W+i·T, ta+i·T ] , i ∈ Z+, as shown in Figure
11. Therefore, as we traverse the broadcasting events, an
increasing number of periods are excluded from being con-
sidered as starting timestamps for the scan windows, which
we subsequently refer to as the scan window’s position.
Coverage: Bridging Exclusion to Latency. How is the
exclusion related to latency? We first consider the worst-
case latency. To illustrate, we split the wall-clock time into
identical segments Gi, in other words, copies of a single
segment G, of length T . As shown in Figure 12, after range-
entrance, a broadcasting event (yellow arrow with circled 1)
occurs. As discussed in the last paragraph, if discovered is
not accomplished with current broadcasting event, we can
infer the exclusion of scan window’s positions: a period
of length W repeating in each segment. Notice that it is
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possible for this very first broadcasting event to achieve a
discovery, it does not represent the worst case. As more
broadcasting events occur, a new period will be excluded
as long as discovery does not occur with the event; the
segment will be gradually covered by the clusters of those
excluded periods. Since the positions in G actually represent
all different offsets between the scan windows sequence and
the broadcasting events sequence, the longest time from the
first broadcasting event to the discovery will be the time
to exclude all possibilities for the offset, i.e., to cover G.
Conclusively, we formulate the Coverage Theory:

Theorem 6.1: Given the parameter set A, T,W , an infinite
sequence of broadcasting events is used to generate clusters
of impossible scan windows’ positions. If the broadcasting
events can fully cover the time-varying segment of length
T within ϱ = LCM(A, T ) time (LCM stands for Lowest
Common Multiple), there is a finite worst-case discovery
latency, which is A+Υf . A is the longest time from range-
entrance to the first broadcasting event, and Υf is the time
from the first broadcasting event to the broadcasting event
that generates the last period to cover G.
Expanded Coverage Theory for Full Latency Distribu-
tion. Theorem 6.1 was first presented in [18], unfortunately
obscuring its underlying probabilistic nature in explanation:
the gradual coverage of segment G is a process constructing
the probability distribution of the scan sequence’s offset to
the broadcasting sequence. Therefore, Theorem 6.1 was not
leveraged to generate the probability distribution of latency
but only the worst-case counterpart. We propose the expan-
sion of the Coverage Theory, illustrating how the latency
distribution is produced respectively for the broadcaster with
fixed and dynamic broadcast interval.
Latency Distribution for Fixed Broadcast Interval. With
an overly focus on the worst-case latency, we considered the
scenario that no discovery occurs during the coverage process
of Segment G. However, whenever a broadcasting event can
contribute to a newly covered period in G, it is possible to
encounter an active scan window; the probability remains
for some scan sequence offsets, in which a scan window
starts within W before this broadcasting event. Consider a
broadcasting event Ap in the left part of Figure 13, where
it can be inferred that: the probability of a scan window
to start in this period of length W covered by Ap is W

T .
Therefore, an intermediate discovery latency, valued by Υm,
is obtained as the time from the first broadcasting event A0 to
Am, accompanied by a successful discovery with Ap. Under
the assumption δbc = 0 (i.e., P (δbc = 0) = 1), the probability
for a scan window to overlap with Ap or the intermediate
discovery latency to be Υp is:

Pl(Υp) = P (Υp | δbc = 0) · P (δbc = 0) =
W

T
(4)

Noticeably, any subsequent Υi(i ≥ m) exists with the
premise that no discovery occurs with Aj(j ≤ m). Therefore,
Ap still needs to produce a coverage to represent the case of
an absent discovery. Each time a new period in G is to be
covered, such as that produced by Aq in Figure 13, it may
collide with a previously covered period. The probability for
Υq then becomes Pl(Υq) = P (Window Start ∈ G[n]\G[prev]),
with G[n] as the new period to cover with Aq and G[prev]
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Fig. 13: Intermediate latency Υi w/ (left) and w/o (right)
redundant coverage.

as the previously covered periods. Specifically, P (Υq) is
calculated as max(W−ν,0)

T where ν is the length of Gq ∩Gprev
and max(W − ν, 0) is the length of net covered period
Gq \ (Gq ∩ Gprev). The intersected period is not considered
since if a scan window starts in that area, the discovery should
haven been completed with a former broadcasting event.

With a list of broadcasting events {Ai | i ∈ Z}, the
simulation will end up with a list LΥ of (Υi, Pl(Υi)) pairs.
Besides, a deadline ε should be settled to represent all large
and infinite latency, which are considered insignificant in the
simulation result. Practically, an entry (ε, 1−

∑
i Pl(Υi)) is

finally appended to LΥ. This finite list will be expanded to
a distribution over different range-entrance situations, i.e.,
δbc ∈ [0, A), while the generated list of pairs only describes
the case δbc = 0. Therefore, case projection becomes the
process to involve all δbc ∈ [0, A) and produce the full
latency distribution. Then the probability density function for
a discovery latency L is formulated as:

P (L) = P (δbc = δibc) · Pl(L− δibc) =
1

A
· Pl(L− δibc), (5)

where δibc = L−Υi, Υi ∈ LΥ ∧Υi ≤ L ∧Υi > L−A

Latency Distribution for Dynamic Broadcast Interval.
When fixed broadcast interval is applied, the broadcasting
events are identical in terms of their relative positions within
the sequence. Consequently, the coverage process of G is
unaffected by which specific event in the sequence occurs
first. However, with a flexibly duty-cycling broadcaster, this
changes; as the broadcasting intervals vary, the interval
between A0 and Ai also changes, leading to different val-
ues of Υi. A chance to recover this breakdown is that a
determined broadcasting sequence in production scenarios
should usually be recurrent, repeating a short sub-sequence
stored in the limited ROM in Bluetooth modules. Therefore,
a determined broadcasting sequence can be represented by
a finite root sequence Q, which records the intervals τj
between a broadcasting event AQ

j and AQ
j−1.

Stemming from the finite length of root sequence, the
first broadcasting event after range-entrance can be enu-
merated from the root sequence, but with a probability
P (AQ

j ) =
τj∑
k τk

assigned. Similar to the situation of fixed

broadcast interval, Lj
Υ containing the (Υj,i, P (Υj,i|AQ

j ))

pairs is generated for each AQ
j . Case projection is again

conducted for each Lj
Υ in the same way in Equation (5):

P (L|AQ
j ) =

∑
i

P (δbc,j = δibc,j) · Pl(L− δibc,j |AQ
j )

=
∑
i

P (L− δibc,j |AQ
j )

τj
,

(6)
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where we have:

δbc,j ∈ [0, τj),

δibc,j = L−Υj,i,

Υj,i ∈ {Υj,u | Υj,u ∈ Lj
Υ ∧Υj,u ≤ L ∧Υj,u > L− τj}.

Note that different from Equation (5), there can be mul-
tiple Υj,i possible to derive L after added by δbc. After
marginalization, we derive the probability density function
of a Latency L as:

P (L) =
∑
j

P (L|AQ
j ) · P (AQ

j ) =
∑
j

∑
i Pl(L− δibc,j |AQ

j )∑
k τk

,

(7)

2) The Architecture of Blender: The reframed and ex-
panded coverage theory renders feasible producing the deter-
ministic latency distribution in a sampling-free manner, cul-
minating in our practical discovery latency estimator Blender.
This section briefly introduces the utility of Blender.

Input. The input of Blender mainly consists of configurations
for broadcaster and scanner. For instance, the scanner config-
uration includes the scan interval T and scan window dura-
tion W ; The broadcaster configuration includes two branches:
the determined parameterization with a finite broadcasting
sequence Q or broadcast interval A. In addition, several
stochastic factors can be involved, including the interference
configuration represented by an average signal interference
rate and the maximum random broadcasting delay (i.e.,
adv delay), which is further discussed in Appendices B and
C.

Modules in Blender. Blender follows a two-step procedure
in producing the latency distribution:

• Coverage Simulation. From the perspective of the
broadcaster, a sequence of broadcasting events is sim-
ulated to estimate the wall-clock time offset between
the scanning sequence and the start of this broadcasting
sequence. With δbc fixed as 0, the simulation results in
a list of several intermediate discovery latency and their
conditional probability.

• Case Projection. The latency from coverage simulation
accounts for a fraction of all possible latency, which
is the reason to annotate their result as intermediate.
The range-entrance case projection (referred to as case
projection), for example with fixed broadcast interval,
projects case δbc = 0 to all δbc ∈ [0, A), meanwhile
producing the overall latency as the summation of a
range-entrance latency (i.e., time from range-entrance
to the first broadcasting event) and each intermediate
latency. When considering stochastic factors, the case
projection requires adaptations, of which the explana-
tion is complemented by the discussion of pragmatic
adapters in the Appendix A.

The output is represented as a cumulative probability dis-
tribution of discovery latency in the complete domain, from
which the P -percentile latency can be easily queried.
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B. Common Interest Extraction

For each scan mode, the broadcast intervals near the valley
or semi-valley area are defined as the interest of this scan
mode. To search the global optimal broadcast intervals, we
extract the common interest by finding the common broadcast
intervals that achieve the locally minimized weight average
discovery latency among n types of scan modes. First of all,
we quantificationally give the definitions of the valley and
semi-valley areas as below.
Definition 1: Valley Area. According to [18], the local
minimum P -percentile latency is computed as

lPmin = P · ⌈ T
W

⌉ ·A (8)

We then regard an A is within the valley area if its P -
percentile discovery latency lPA equals to lPmin.
Definition 2: Semi-valley Area. We regard an A is within
the semi-valley area if its P -percentile latency meets lPA ≤
α · lPmin, where α is a relaxation coefficient (α > 1).

For each scan mode si ∈ S, i = 1, 2, ..., n, from the input
of Common Interest Extraction, we can get the lPA , the P -
percentile latency of any given A. By comparing lPA and lPmin

according to the definitions of valley area and semi-valley
area, we can get the set of feasible broadcast intervals Bi that
is within the valley or semi-valley areas. Then we compute
the intersection B∗ among n scan modes by B∗ = B1 ∩
B2 ∩ ... ∩Bi ∩ ... ∩Bn.
Optimality Analysis. Through Common Interest Extraction,
we obtain B∗, a set of feasible broadcast intervals that are
within the valley or semi-valley areas of all the n scan
modes. According to Equations (2) and (3), from B∗ we can
always find an interval that achieves the minimal weighted
average discovery latency across all scan modes, called the
Single Broadcast Pattern. We then formulate this problem as
follows:

min l̂ =

n∑
i=1

ωi · li,j , s.t. bj ≥ Amin, ∀bj ∈ B∗ (9)
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where li,j is the worst-case discovery latency of scan mode
si with the jth feasible broadcast interval bj (bj ∈ B∗). We
further give an example of two types of scan modes s1 and
s2 whose market shares are ω1 = 30% and ω2 = 70%.
Assume from Common Interest Extraction we obtain the
intersection including 3 feasible broadcast intervals, i.e.,
B∗ = {b1, b2, b3} = {1980 ms, 2560 ms, 4460 ms}.
Assume the power budget is Amin = 2000 ms, then b1
is discarded due to power constraint. Assume from Local
Optima Estimation, we have l1,2 = 5 s, l2,2 = 20 s, l1,3 = 8
s and l2,3 = 10 s, then we compute the weighted average
discovery latency of b2 and b3 as l̂2 = 15.5 s and l̂3 = 9.4 s,
respectively. As a result, b3 = 4460 ms becomes the optimal
broadcast interval that is recommended by the ElastiCast
algorithm.

However, simply setting a single optimal broadcast interval
using the way depicted above might result in bias. This is
because the implementations of the most modern BLE chips
set a mandatory random advertising delay, i.e., adv delay
as illustrated in Figure 14(a), before each broadcasting
event [49]. adv delay is not a constant and varies up to
10 ms. Thus, always adding a random time to the settled
broadcast interval might result in a larger discovery latency
than expected. Specifically, a broadcast interval within the
valley area might be shifted to a non-valley area due to the
mandatory and random adv delay.

To explain this more clearly, we conduct experiments
on how ElastiCast performs with and without adv delay.
Figure 14(b) shows the results. Through simulation, we
have known A = 1980 ms is within the valley area for
the scan mode with W = 60 ms and T = 600 ms, i.e.,
it obtains the local minimum worst-case discovery latency
ideally. However, in practical cases with adv delay the tail
latency (e.g., 85-percentile latency = 21 s) is larger than
that in the ideal cases without adv delay (e.g., 85-percentile
latency = 16 s). Hence, adv delay induces a negative effect
for ElastiCast.

For a more practical ElastiCast, our next goal is to seek a
way how to avoid the negative effect of adv delay. Based
on our long-term and comprehensive observations, we find
that different broadcast intervals show different sensitivity to
adv delay. As illustrated in Figure 15, assume the broadcast
interval b1 achieves the global minimal weighted average
discovery latency among all scan modes. While compared
with b1, the broadcast interval b2 is less sensitive to the
adv delay, which obtains a lower latency bias (i.e., ∆l2 <
∆l1). We thus infer that the combination between b2 and
b1 improves the adaptability in the context of the random
adv delay. Specifically, when adv delay is large, the broad-
cast interval b2 might achieve lower discovery latency than
b1. This greatly motivates the Interval Multiplexing as we
will elaborate next.

C. Interval Multiplexing

As discussed above, the Single Broadcast Pattern might
fall short due to the existence of adv delay. In this section,
we explain how to step further toward the global optima by
adopting the intermixed use of multiple broadcast intervals
instead of the single one, thus we present the Alternation
Broadcast Pattern as blow.

Figure 16 illustrates an example of the broadcasting event
sequence when applying the Alternation Broadcast Pattern.
In this pattern, two3 phases with intervals x and y (x, y ∈
B∗) appear interchangeably. We define ϕx and ϕy as the
repeated times of intervals x and y, respectively. For example
in Figure 16, we have ϕx = 2 and ϕy = 3. We define the
equivalent broadcast interval (denoted by Â) as the average
time between two consecutive broadcasting events. Then for
the Alternation Broadcast Pattern, we have Â =

xϕx+yϕy

ϕx+ϕy
.

When ϕx = 0 or ϕy = 0, the Alternation Broadcast Pattern
falls back to the Single Broadcast Pattern.
Decision-Making. The decision-making is to select the best
pattern and the corresponding parameter configuration from
the Single Broadcast Pattern and the Alternation Broadcast
Pattern. ElastiCast aims to achieve the minimized weighted
average discovery latency within the power budget, therefore
the constraint in Equation (3) can be updated as Â ≥ Âmin,
where Â is the equivalent broadcast interval of broadcast
pattern and Âmin is the minimum equivalent broadcast
interval.

D. Discussion

This section discusses the provisioning principles for such
parameters as the latency percentile (P ), the relaxation coef-
ficient (α), and the repeated times (ϕx and ϕy).
Latency Percentile. In OFN applications, the user experience
is closely related to the success ratio (possibility) of finding
the lost device, where the P -percentile discovery latency mat-
ters. Although P are customizable, to better fit the problem
of achieving the highest success ratio within the valley or
semi-valley area, it is recommended to compute P by P =
min{ latency tolerance

lmax
min

· 100, 100}, where latency tolerance

is the time a finder device spends within the BLE signal range
in the walking scenario (see Figure 5), and lmax

min = ⌈ T
W ⌉ ·A

is the local minimum worst-case latency [18].
Relaxation Coefficient. In general, setting a large relaxation
coefficient α (e.g., α = 5) expands the solution space
of feasible broadcast intervals but also induces significant
search overhead. On the other hand, setting a small α (e.g.,
α = 1.001) shortens search time but may fail to extract the
common interest. Hence, B∗ = ∅ means the relaxation factor
α is set too small. In this paper, we increase α by 10% until
it meets B∗ ̸= ∅. This assures ElastiCast can always obtain
a globally feasible solution with a bounded overhead.

3Generally, ElastiCast can multiplex as many feasible broadcast intervals
as possible (i.e., ≥ 2) to search for the best pattern and parameter configu-
ration. However, considering the exploding solution space and deployment
hurdles, this paper only focuses on patterns consisting of two intervals and
leaves the patterns consisting of more than two intervals for future work.
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Fig. 17: An example of how to select the ϕx and ϕy

combination. The settings of this experiment are the same
as the one in Figure 20. The red dot achieves the lowest
weighted average discovery latency with the ϕx and ϕy

combination (6, 12).

Repeated Times. For the Alternation Broadcast Pattern,
the repeated times ϕx and ϕy decide the phase duration
proportion of the two broadcast intervals x and y. Note that
ϕx and ϕy are not the input of ElastiCast but the output.
The optimal ϕx and ϕy might vary with the inputs (e.g.,
scan modes) when the Alternation Broadcast Pattern is the
preferred option. To select ϕx and ϕy , we straightforwardly
search through combinations that result in a preferable per-
centile latency. As shown in Figure 17, we search within
the ranges ϕx ∈ [1, ϕmax

x ] and ϕy ∈ [1, ϕmax
y ], where ϕmax

x

and ϕmax
y are calculated based on the scanning modes. For

example, assuming there are n scan modes, ϕmax
x is computed

as ϕmax
x = [max {LCM(x, Ti) | i = 1, 2, . . . , n}] /x. We then

exhaustively search these combinations to select the optimal
ϕx and ϕy that result in a preferable percentile latency.
Relationship among Alternation Broadcast Pattern, Cov-
erage, and Latency Percentile. Interval multiplexing makes
the CRT-based analysis unsuitable without a fixed broadcast-
ing interval. Consequently, the latency estimation pivots to
being governed by the extended Coverage Model. Impor-
tantly, the extended Coverage Model reveals the mechanism
behind how dynamic broadcast interval overcomes the impact
on P -percentile latency under adv delay. While the model
with dynamic broadcast interval shares the fundamental idea
of coverage with fixed broadcast interval, we use the latter to
simplify the following explanation. As implied in §VI-A1, the
latency distribution directly correlates with the scan window
position distribution. In other words, the P -percentile latency
will be Υi + b, where after broadcasting event Ai, the
coverage status of segment G should be |Gcovered|

|G| ≥ P%.
Therefore, lowering P -percentile latency is equivalent to
faster achieving a coverage of P% for G. The fastest cov-
erages for any P are achieved by valley broadcast intervals,
stemming from the observation that there are no redundantly
covered periods in G. However, adv delay can deteriorate
this optimality. While the position of a broadcasting event
becomes probabilistic, the originally deterministic period to

1 2 3 4 5 6
A (s)  

0.0

0.1

0.2

0.3

0.4

RM
SE TMC17

Blender

Fig. 18: RMSE of the distribution generated by Blender
and ideal case simulator compared to the measurement
traces.

be covered in G becomes a distribution. Therefore, even if
the broadcast interval belongs to valley, some of the samples
from this distribution of periods could overlap with previ-
ously covered periods, slowing down the process towards P%
coverage. When dynamic broadcast interval (e.g., interval
multiplexing) is adopted, such a distribution of periods could
be shifted along with a shifted broadcasting event, potentially
reducing or even avoiding any redundant coverage caused by
the periods in the distribution.

VII. EVALUATION OF BLENDER

Comparison on Percentile Latency. To validate Blender’s
basic functionality, the simulation results are compared with
the measurement traces. Since one of the major targets of
Blender is to provide the percentile latency, the comparison
focuses on 20, 50, and 80-percentile latency, which lay
through the most part of the distribution and preliminarily
reflects the ability of the model-based output to fit the
traces. We select 6 configurations for broadcasters, and 2 for
scanners, and measure in 2 physical locations with different
average packet loss rates.
Measuring the Effectiveness of Stochastic Factor Adap-
tors. Blender has equipped several modules to adapt stochas-
tic factors, such as the random advertising delay and en-
vironmental interference, which introduces extra analysis
and computation burden on the framework. To prove the
significance of these excessive efforts, we compare Blender
with a simulator constructed upon the effective-scan-window
[16] model for ideal cases, denoted as TMC17. The RMSE
between the distributions generated to the measurement
traces are compared to show the ability to reflect pragmatic
scenarios.
Measurement Setup. The testbed for measurement consists
of two Android smartphones, which are installed with a
controller application that manipulates BLE signal broad-
casting/scanning. The application is developed based on an
official example [50] with an additional module to measure
the average packet loss rate, which is a necessary parameter
for the simulation. The loss measurement module keeps one
phone advertising the BLE packets N times and another
phone continuously scans the advertising channel. In this
way, the scanner can estimate the channel’s packet loss
rate by checking the percentage of successfully received
advertising packets over N .
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TABLE III: Percentile latency between simulation (Sim) and measurement (Mea). (Parameter in milliseconds

Parameter Type
Broadcaster

A
Scanner

W
T

Avg.
Loss Rate

P20
L(Sim)

P20
L (Mea)

P50
L(Sim)

P50
L(Mea)

P80
L(Sim)

P80
L(Mea)

Randomized
Broadcasting

1140
512
5120

26%
3.10s 4.28s 7.72s 8.59s 16.4s 15.1s

3250 8.83s 9.59s 22.6s 20.4s 43.1s 39.7s
6530 17.7s 15.6s 44.3s 43.4s >50s >50s
1140

43%
4.10s 4.38s 10.1s 11.9s 23.7s 27.5s

3250 1024
4096

4.70s 2.78s 12.4s 13.7s 27.8s 31.1s
6530 9.17s 10.1s 24.9s 21.3s >50s 48.3s

Flexible
Duty-Cycle4

1860×4
+2140×6 512

5120

26% 5.48s 6.5s 15.1s 14.1s 33.6s 32.0s

1280×2
+3250×4
+4000×1 43% 11.0s 9.27s 28.8s 26.8s >50s >50s

860×5
+6530×2

1024
4096 3.22s 3.96s 7.45s 9.38s 21.3s 19.1s

Evaluation results. Results are shown in Table III. For the
parameters selected to produce the percentile latency, most
of the results can act as a close estimation of the realistic
situations. Although some of the 80-percentile latency shows
a larger deviation, the trend of the real distribution is gener-
ally well-represented. To further represent the ability of the
model to fit the realistic situation, the root-mean-square error
(RMSE) is introduced as the metric to quantify the similarity
between any two distributions. Figure 18 shows the results
with growing advertise interval under the LOW POWER
scan mode defined in Android BLE module [51]. When
considering both stochastic factors, Blender results in much
smaller RMSE values than the simulation that only considers
the ideal scenario (i.e., TMC17) in an environment with
on average 43% packet loss rate regardless of the selected
advertising interval, which hence proves that the stochastic
factors are worth handling. Conclusively, Blender is capable
of being applied in real-world scenarios and provides satis-
factory outputs.

VIII. EVALUATION OF ELASTICAST

A. Experiment Setup

Inputs. A type of scan mode is in the form of W/T . For
example, “1024ms/4096ms” refers to the scan mode with a
scan window of 1024 ms and a scan interval of 4096 ms. The
evaluation inputs are si ∈ S (i = 1, 2, ..., n), ωi, and Âmin,
where si is the ith type of scan mode, ωi is the market share
of si, and Âmin represents the broadcaster’s power budget
in the form of the minimum equivalent broadcast interval.
Parameters. We run tests for broadcast intervals that meet
A ∈ [Aleft, Aright], where we recommend Aleft ≥ 20 ms
and Aright < min{10240ms, latency tolerance} accord-
ing to the whole range of broadcast intervals allowed in BLE.
In this paper, we set Aleft = 20 ms and Aright = 10240 ms.
The initial relaxation coefficient is set α = 1.2.

4Due to the limitation of Android BLE module, the flexible duty-cycle is
currently measured from a random sampler imitating the detailed behavior
of the BLE devices.
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Fig. 19: Overall performance of ElastiCast. (a) Scan
modes: 512ms/5120ms and 1024ms/4096ms. (b) Scan
modes: 20ms/600ms and 30ms/300ms.

Schemes. Let LOP (Local OPtima) be the scheme that
sets the broadcast interval that achieves the tight duty-
cycle-dependent bounds on discovery latency (i.e., lPmin in
Equation (8)) for only one type of scan mode, i.e., LOP
locally optimizes latency. Since no prior neighbor discovery
parameter setting approaches can beat LOP in the case of
homogeneous scan mode [18], we select LOP as the baseline
for ElastiCast evaluation in the case of scan mode diversity.
ElastiCast-SBP refers to the Single Broadcast Pattern and
ElastiCast-ABP refers to the Alternation Broadcast Pattern.

B. Performance Improvement of ElastiCast

In this experiment, we investigate two representative sce-
narios, where 512ms/5120ms (i.e., LOW POWER) and
1024ms/4096ms (i.e., BALANCED) are two types of de-
fault scan modes supported by most Android phones [42],
and 20ms/600ms and 30ms/300ms are two types of scan
modes adopted by the applications of HarmonyOS (e.g.,
HiLink [47]) and iOS (e.g., Apple’s Find My [3]), respec-
tively. The market shares of both scan modes are 50%. “LOP
(20ms/600ms)” refers to the scheme that locally optimizes
latency for the scan mode of 20ms/600ms, and so forth.

Figure 19 shows the minimized weighted average discov-
ery latency l̂ (Y-axis) when applying each scheme within
the power budget in the form of Âmin (X-axis). It is demon-
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Fig. 20: (a) A case study on latency distribution when
Âmin = 4000 ms. (b) Examples of the selected broadcast
interval(s) in different schemes.

strated that ElastiCast can always bound the neighbor discov-
ery latency in the case of scan mode diversity. Specifically,
Figure 19(a) shows the performance with two scan modes
512ms/5120ms and 1024ms/4096ms. Both ElastiCast-SBP
and ElastiCast-ABP outperform LOP in most cases. Particu-
larly, compared to LOP(1024ms/4096ms), both ElastiCast-
SBP and ElastiCast-ABP reduce the discovery latency by up
to 50% in some cases. Figure 19(b) shows the performance
with two scan modes 20ms/600ms and 30ms/300ms.
We can see that, compared to LOP(20ms/600ms), both
ElastiCast-SBP and ElastiCast-ABP reduce the discovery
latency by more than one order of magnitude (i.e., 90%)
in some cases. Note that compared to ElastiCast-SBP,
ElastiCast-ABP reduces the discovery latency by up to 40%
in the scenario of 20ms/600ms and 30ms/300ms, but only
gains a margin benefit in the scenario of 512ms/5120ms and
1024ms/4096ms. This can be attributed to the adv delay
that induces more negative effects in the scenario of
20ms/600ms and 30ms/300ms.

To explain the benefit of ElastiCast more clearly, we give
a case study on latency distribution when Âmin = 4000
ms. As shown in Figure 20(a), we mark the selected/optimal
broadcast interval(s) for each scheme with colored cycles.
Figure 20(b) further shows the exact values of broadcast
intervals selected by corresponding schemes. For example,
ElastiCast-SBP selects 4600 ms as the optimal broadcast in-
terval, and ElastiCast-ABP selects both 2980 ms and 5620 ms
(Â = 4300 ms) that appear interchangeably. Our decisions
are then made by comparing the minimized discovery latency
of all schemes.

C. Stability Analysis

How does the type of scan mode impact stability? First of
all, we regard scan modes with different W or T as different
types of scan modes even if they have the same duty cycle.
This is because they have different valleys or semi-valley
areas. For example, given Âmin = 4000 ms, although the
duty cycles are both 10%, the optimal broadcast interval of
LOP(30ms/300ms) is 4030 ms, but the optimal broadcast
interval of LOP(512ms/5120ms) is 4000 ms. As shown in
the experiment results in §VIII-B, ElastiCast shows stability
in achieving global optima regardless of the types of scan
modes.
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Fig. 21: (a) Performance under different market
shares. (b) Performance comparison between AirTag
and ElastiCast. (Screen On: 60ms/600ms, Screen Off:
60ms/3000ms)
How does the power budget impact stability? As shown in
Figure 19, the power budget impacts the decision-making sig-
nificantly, however, ElastiCast still approximates a bounded
and globally minimized latency.
How does the market share impact stability? We fur-
ther vary the market shares of scan modes. For example,
“3:7” represents that the market share of 512ms/5120ms
is 30%, and the market share of 1024ms/4096ms is 70%.
Figure 21(a) shows that no matter how the market shares
change, ElastiCast always approximates a bounded and glob-
ally minimized discovery latency.

D. Deployment Experience: HUAWEI Tag

ElastiCast has been deployed in Huawei’s commercial-off-
the-shelf (COTS) BLE devices, called HUAWEI Tag [40].
HUAWEI Tag acts as the role of Lost Device (see Fig-
ure 2) in the ecosystem of OFN. The Finder Devices are
currently with two types of scan modes, i.e., 60ms/600ms
and 60ms/3000ms, which refer to the scan modes applied
when the screens of the Finder Devices are on and off,
respectively. Based on our long-term market statistics, the
market shares of the scan modes approximate 33% and 67%,
respectively.

We compare ElastiCast with Apple’s AirTag which adopts
a fixed broadcast interval of 2000 ms. We estimate the
success ratio of finding the lost Tag with a latency toler-
ance of 14 seconds. Let N+ be the number of tests that
meet discovery latency of fewer than 14 seconds, and N−

otherwise. The success ratio is computed by N+

N++N− . For a
fair comparison, Âmin varies in a small range of [1950, 2050]
ms. Figure 21(b) shows the results. It is demonstrated that
ElastiCast outperforms AirTag no matter whether the screen
is on or off. In a case with three Finder Devices nearby,
ElastiCast obtains an improvement of over 11% on the overall
success ratio.

The lesson we have learned during deployment is that the
scanner rarely strictly follows the instructions of parameter
settings. For example, when we set the scan interval as 600
ms, the actual scan interval might be 605 ms with a small
random bias, which we believe is attributed to the hardware/-
software task scheduling on the Finder Devices. Together
with adv delay, this may further impact the performance
of the Single Broadcast Pattern. However, our evaluations
demonstrate that the Alternation Broadcast Pattern can still
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compensate for the negative effect induced by the scanner
side.

IX. CONCLUSION

This paper examined the framework design and perfor-
mance optimization in OFN. Our study identifies the unique
features as well as the fundamental design challenges in OFN
neighbor discovery. Our proposed ElastiCast has proven to
be effective in achieving stable and low-latency neighbor
discovery within the power budget in the case of scan mode
diversity. The authors have provided public access to the code
of Blender at https://github.com/litonglab/blender-neighbor-
discovery.
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Algorithm 1: Probabilistic Coverage for Possible
Scan Window Starting Positions

Require: Index of αj-j, Range of j-n, τj , Loss
Rate-Fp, End Time-ε

Result: List of (Υi, P (Υi|αj)) pairs
1 next_idx ← j mod n;
2 timestamp ← 0;
3 itv_entries ← EmptyList() of (interval, π);
4 while timestamp does not exceed ε do
5 Conduct coverage on an interval

σ = (timestamp−W,timestamp];
6 if σ does not collide with other intervals then
7 Append (timestamp, W ·(1−Fp)

T );
8 Record the interval σ as an entry (σ, Fp) in

itv_entries;
9 else

10 for Every uncollided partition part_uncol
of σ do

11 ν̄k← len(part_uncol)

12 Append (timestamp, (ν̄k)·(1−Fp)
T );

13 Record the interval σ as an entry
(part_uncol, Fp) in itv_entries;

14 end
15 for Every collided partition part_col of σ

do
16 prev_itv, πk

← the entry of a former interval that
17 contains part_col;
18 Clip part_col from prev_itv inside

itv_entries;
19 νk← len(part_col)

20 Append (timestamp, νk·πk·(1−Fp)
T );

21 Record (part_col, πk · Fp) in
itv_entries;

22 end
23 end
24 end

APPENDIX A
PRODUCING LATENCY WHILE ADAPTING

ENVIRONMENTAL INTERFERENCE

The foundation of the Coverage Theorem and our elab-
oration is that an observer in the broadcaster’s perspective
has absolute confidence in its inference result of the scan
window’s positions. However, environmental interference
introduces uncertainty, which indicates that an uncaptured
broadcasting event may not exclude the existence of a scan
window. While a systematic consideration of the interference
factors can cast a high bias on specific environments and may
overemphasize the minutiae of signaling stages, an average
packet loss rate Fp can be a generalization about the impact
of a complex of factors.

1
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Fig. 1: The Probability Coverage Model Based on Clip-
ping Redundantly Covered Areas

The key to integrating Fp into the existing coverage pro-
cedure is to maintain a probability model for the segment of
possible scan window starting positions. Figure 1 illustrates
the model’s operation to process the covered area by a
new broadcasting event. Originally, assume there was an
area ① covered by an uncaptured broadcasting event A1.
With packet loss rate Fp given, A1 has 100 · (1 − Fp)%
confidence to exclude the scan window starting positions
in area ①. In other words, the probability for A1 to leave
area ① uncovered is Fp. When A2 induces a new area ②,
a partition of area ② collides with area ①, annotated as
square-A. While square-A is ignored and only the rest of
area ② is considered in interference-free simulation, here it
requires separate treatment since it has Fp chance to not be
a redundant coverage. Therefore, the probability assigned to
the intermediate latency Υ2 with αj as the first broadcasting
event is the summation of the possibility of covering area
② (remaining) and square-A. From this instance, it can
be deduced that if every covered area has a corresponding
probability π, the intermediate latency has a probability:

P (Υi|αj) =
∑
k,i

νkπk(1− Fp)

T
+

(1− Fp)(W −
∑

k,i νk)

T
(1)

where πk is the π of the interval that νk lies in.
The subsequent case projection operation is exactly the

same as the interference-free simulation since case projection
is based on the range-entrance situation where packet loss is
not involved. However, a left-over issue is the update strategy
of πk. Therefore, Algorithm 1 is presented to explain the
whole coverage procedure.

APPENDIX B
2-STEP CASE PROJECTION OF

EFFECTIVE-SCAN-WINDOW-BASED MODELS

This section presents the design details of specific Case
Projection steps of the Effective-Scan-Window-Based model
in Blender. We first introduce the base case simulation and
the single discovery process in §B-A. Then in §B-B and
§B-C, the case projection module that can produce the
complete CDF is illustrated, which is the key to improving
the simulation efficiency.

A. Base Case Simulation

In the base case simulation, attributes δbc and δs, describ-
ing a range-entrance case, respectively annotate the time from
the range-entrance event to the first following broadcasting
event and the end of the first following scan window. With A,
T , δbc, and δs, a time sweeper similar to [1] will then traverse
through the timeline from range-entrance, and the time from
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Fig. 2: Examples of the equivalence-relation-based Case
Projection.

range-entrance to the first discovery (when no packet loss
considered) becomes the discovery latency L(δbc, δs).

B. Step Details in Case Projection
The purpose of case projection is to avoid redundant

simulation of the discovery process. Instead, some of the
range-entrance events share a similar discovery process (i.e.,
the relative position of the broadcasting events and scan
windows on the timeline are the same), where the only
difference is the offsets of the first broadcasting event and the
first scan window from the range-entrance event. Intuitively,
the latency in the non-base cases can be directly derived from
the latency in the correlated base cases, which is called case
projection. Case projection comprises two steps.

The Phase-Difference Projection. The cases when A <
T are used as example. As an initial step, δbc is fixed to
0, which is annotated as Ideal Range-Entrance and infers
that the first broadcasting event A0 occurs immediately at
the range-entrance event. The first scan window w0 has T
possible positions depending on the value of δs. Each of these
positions is alternatively described by tw0

∈ (0, T ], where tw0

is the closing timestamp of w0 relative to range-entrance. By
passing a tw0 as range-entrance situation into the simulation,
a corresponding timestamp Dw0 (relative to t0, the timestamp
of the range-entrance event) where the discovery occurs can
be produced. As A < T , there must be a pair of twi

0
and

twi+1
0

that are A distance apart, whose difference to Ai and
Ai+1 are the same. Thus, the QS represented by twi

0
has the

same phase difference to QA as that represented by twi+1
0

. In
other words, the wake-up and sleep schedule of the scanner
and broadcaster are identical after twi

0
and twi+1

0
, indicating

that Dwi
0
− twi

0
= Dwi+1

0
− twi+1

0
. We can then have the

following statement.

Theorem B.1: When A0 is fixed at the range-entrance
event, for every twi

0
∈ (A, T ], the discovery latency can be

represented as

L(0, twi
0
) = Dwi

0
= D

wi−1
0

− t
wi−1

0
+ twi

0

= D
wi−1

0
+A = L(0, t

wi−1
0

) +A,
(2)

where L(x, y) is the discovery latency with δbc = x and
δs = y.

Based on Equation (2), the latency of all Ideal Range-
Entrance cases L(0, twi

0
)(twi

0
∈ (A, T ]) can be derived from

those of the base cases L(0, tw0
0
)(tw0

0
∈ (0, A]) as shown in

Figure 2(a) (the Phase-Difference Projection):

L(0, twi
0
) = L(0, tw0

0
) + i ·A(i = ⌊

twi
0

A
⌋) (3)

The Range-Entrance Projection. After considering all
phase differences between QA and QS with fixing δbc = 0,
the next procedure is to involve the phase difference between
QA and range-entrance by left-shifting the range-entrance
event. Cases with this shifted range-entrance event are re-
ferred to as General Range-Entrance cases. After shifting
A0 away from range-entrance, tw0 ∈ (0, T ] is still valid.
Compared to the original interval of tw0

when δbc = 0,
this new interval includes a new range (0, δbc] and excludes
(T, T + δbc]. For the other tw0

∈ (δbc, T ], the discovery
latency can be directly derived from those produced by (3).
Also, each tw0

∈ (0, δbc] can be projected to the excluded
range (T, T + δbc], where the discovery latency values have
already been produced as well. Specifically, we have the
following statement as the Range-Entrance Projection:

Theorem B.2: ∀twi
0
∈ (0, T ], δbc ∈ (0, A), the discovery

latency can be represented as

L(δbc, t
δbc
w0

) = L(0, t0w0
) + δbc, (4)

where t0w0
and tδbcw0

are in the same QS on wall-clock time
(In other words, t0w0

+ δbc ≡ tδbcw0
mod T ).

C. Integrated Case Projection Progress

By combining Equations (3) and (4), a formula is derived
to get all A·T discovery latency values from {L(0, twi

0
)|twi

0
∈

(0, A]}. Theoretically, the trivial case A = T can also cope
with this formula (and the precedent ones), which is however
commonly not suggested in parameter tuning because it can
often lead to parallel broadcasting and scanning and a high
probability of infinite discovery latency.

Theorem B.3: When A < T , given T,A,W , any case
(δbc, δs) can be projected to A base cases and retrieve its
discovery latency by:

LT,A,W (δbc, δs) =LT,A,W (0, (δs − δbc + T )mod T )mod A

+ δbc +

⌊
(δs − δbc + T )mod T

A

⌋
·A

When A > T , the simulation and latency value projection
procedures can be re-applied with switching roles of QA and
QS . For example, now tw0

is initially fixed at the range-
entrance, which produces a function to project the cases
A0

0 ∈ [0, T ) to Ai
0 ∈ [T,A) similar to Equation (3) where

the attributes for scan and broadcasting are exchanged.
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When the range-entrance starts to left-shift from w0, a
modification is required to resolve a special case as shown
in Figure 2(b). When A < T for any δbc, no discovery can
occur in [t0, t0 + δbc) since no broadcasting event exists in
this interval. When A > T , however, a scan window can
cover a partition of [t0, t0 + δs). If A0 occurs in that time
period, L(A0, δs) will not be equivalent to L(A1, δs) with
A1 as the subsequent broadcasting event in the same QA as
A0, but become δbc instead. This affects Equation (4), which
together with the above reformed Equation (3) constructs the
projection function below.

Theorem B.4: When A > T , given T,A,W, δbc, δs, the
discovery latency can be projected to T pre-calculated latency
values from simulation by:

LT,A,W (δbc, δs) ={
δbc if δs > 0 ∧ 0 < δs − δbc < W

L∗ + δs +
⌊
(δbc−δs+A) mod A

T

⌋
· T otherwise

(5)

where L∗ = LT,A,W ((δbc − δbc +A) mod A mod T, 0).
The benefit of the above 2-step case projection can be

exposed by experiments to compare the running time between
random sampling and case projection. While the major draw-
backs of random sampling include the long running time due
to repetitive sampling before the result resembles the theo-
retical CDF, case projection can reduce the running time by
2-10 times, observed among 20 sets of scan and broadcasting
parameter configurations using Python implementation.

APPENDIX C
ADAPTING RANDOM BROADCASTING DELAY AND

ENVIRONMENTAL INTERFERENCE WITH
EFFECTIVE-SCAN-WINDOW-BASED MODEL

It is arduous to utilize the coverage theory when random-
ized broadcasting (i.e., the adv delay) is involved, since the
number of possible broadcasting sequences, differentiated by
the intervals between consecutive broadcasting events, grows
exponentially as more broadcasting events occur. The alter-
native is to simulate the whole discovery process between
the broadcaster and the scanner from a global perspective
for every range-entrance event.

The adv delay introduced in BLE brings randomness to
the periodic intervals of a broadcaster. This randomness first
affects A0, where the range of δbc expands to [0, A+Rd) as
the largest possible broadcasting interval is now A + Rd.
However, the probabilities of δbc being each value in its
range are no longer identical. The broadcasting interval TA0

right before A0 now has Rd candidate values with equal
possibilities. For each possible TA0 , δbc follows a uniform
distribution in [0, TA0), which can always cover [0, A).
Therefore, the probability distribution of δbc can be divided
into two parts, δbc ∈ [0, A) and δbc ∈ [A,A+Rd). The total
possibility of the second part, produced by simple analysis,
can be at a magnitude of 10−3, indicating that ignoring these
possibilities could reduce computation time with negligible
impact on the integrity of the simulation result. Therefore,

Blender mainly focuses on modeling the effect of adv delay
on the broadcaster’s time control after t0.

Algorithm 2: The Summation Accumulator.

1 accum_layers←
[[1, 1, 1, ..(totally (Rd + 1) ones).., 1]] ;

2 layer_sums← [];
3 Function GetProbability:

Require: Index of Ai-i, Position of Ai among its
Possible Range-ts pos

Result: Probability for Ai to be at ts pos
4 while i ≤ length(accum_layers) do
5 NextLayer();
6 i++;
7 end
8 Run NextLayer() until

i > length(accum layers);
9 cur layer ← accum layers[i− 1];

10 Return Probability← cur_layer[ts_pos]
layer_sums[i−1] ;

11 end
12 Function NextLayer:
13 last_layer←

accum_layers[−1] new_layer←
EmptyArray() of length(last_layer)+Rd;

14 new_layer[j]←Sum(last_layer[j:j-Rd]);
15 layer_sums + = layer_sums[−1]d;
16 end

As there are various broadcasting intervals, QA formed
with a given δbc no longer consists of determined timestamps
but probabilistic distributions for each broadcasting event in
it. This uncertainty of the broadcasting events’ position in
time may result in various discovery latency values follow-
ing a specific PDF as an output of the latency producer.
Therefore, the latency producer is attached to a so-called
adv delay Accumulation Module. We first focus on the new
form of QA. While A0 is at a determined timestamp, A1

would occur inclusively between A0 +A and A0 +A+Rd

with each discrete value having an occurrence possibility of
1
Rd

. Each possible timestamp of A1 can derive a range of
possible timestamps of A2 in a similar way, where each value
is equipped with a probability of 1

R2
d

. By integrating all those
ranges of A2, the PDF of A2’s possible timestamps (ranging
in [A0 + 2 ·A,A0 + 2 · (A+Rd)]) can be generated.

A difficulty in latency producing is that, as the probabilities
of Ai+1’s timestamps are determined by those of Ai, it
is hard to produce a list of PDF for A0, A1, A2... and
retrieve the required probability from the list in each call of
latency producer. The process to generate the probabilities
of Ai+1’s candidate timestamps can be time-consuming due
to the exponential growth. We adopt a so-called Summation
Accumulator (see Algorithm 2) as a solution. The algorithm
stores the probability of possible positions for each Ai as the
ith layer and dynamically derives the i+ 1th layer.

While the timestamps of broadcasting events become non-
deterministic with a single δbc, the discovery events also
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Fig. 3: Probabilistic Discovery with adv delay

become probabilistic. Figure 3 shows an example case of
discovery judgment. A broadcasting event Ai is able to be
discovered only when the timestamp range it belongs to has
an intersection with a scan window. A discovery latency
value can be produced by each of the timestamps in this
intersection and is attached with the same probability of Ai

being at that timestamp. This intersection is then considered
to be ”discovered”, probably leaving a range of Ai outside
of it. This ”undiscovered” range is then used to generate
the probabilities of Ai+1’s candidate timestamps and the
assignment of probability to latency continues in the same
way as for Ai. A general procedure of discovery judgment
is shown in Algorithm 3, which can be applied when the
loss is simultaneously considered. Specifically, lines 6 and 7
process the situations without/with packet loss.

It is worth noticing that, when adv delay is involved,
the case projection requires amendments. For example, when
A < T , the Phase-Difference Projection (Equation 3 will no
longer be based on adding multiples of A, since the actual
interval between the broadcasting events is probabilistically

ranging from A to A+Rd. Therefore, the value to be added
is a probabilistic one, whose probability can be calculated
by the summation accumulator. Due to the same reason,
the Range-Entrance Projection for A > T also changes the
addition of A to adding each value in A+Rd with the same
probability. Meanwhile, these procedures may be equipped
with versatile implementations, which can highly affect the
complexity of the algorithm.

Algorithm 3: Updating the Summation Accumulator
during the Loss-Involved Simulation.
Require: Position of Ai among its Possible

Range-ts_pos
1 Fetch cur_accum_layer and cur_layer_sum

from
current layer’s status in Summation Accumulator;

2 if ts_pos is covered by current scan window then
3 ts_prob←GetProbability(i,ts pos)
4 P (latency = Ai) + = ts_prob · (1− Fp);
5 cur_accum_layer[ts_pos]× =Fp;
6 end
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